Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513841

RESUMO

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Assuntos
Acetilcisteína , Metabolismo Energético , Lesão Pulmonar , Mecloretamina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Mecloretamina/toxicidade , Masculino , Metabolismo Energético/efeitos dos fármacos , Ratos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Substâncias para a Guerra Química/toxicidade
2.
J Pharmacol Exp Ther ; 388(2): 518-525, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914413

RESUMO

Nitrogen mustard (NM) is a known surrogate of sulfur mustard, a chemical-warfare agent that causes a wide range of ocular symptoms, from a permanent reduction in visual acuity to blindness upon exposure. Although it has been proposed that the two blistering agents have a similar mechanism of toxicity, the mode of NM-induced cell death in ocular tissue has not been fully explored. Therefore, we hypothesized that direct ocular exposure to NM in mice leads to retinal tissue injury through chronic activation of the unfolded protein response (UPR) PERK arm in corneal cells and VEGF secretion, eventually causing cell death. We topically applied NM directly to mice to analyze ocular and retinal tissues at 2 weeks postexposure. A dramatic decline in retinal function, measured by scotopic and photopic electroretinogram responses, was detected in the mice. This decline was associated with enhanced TUNEL staining in both corneal and retinal tissues. In addition, exposure of corneal cells to NM revealed 228 differentially and exclusively expressed proteins primarily associated with the UPR, ferroptosis, and necroptosis. Moreover, these cells exhibited activation of the UPR PERK arm and an increase in VEGF secretion. Enhancement of VEGF staining was later observed in the corneas of the exposed mice. Therefore, our data indicated that the mechanism of NM-induced ocular toxicity should be carefully examined and that future research should identify a signaling molecule transmitted via a prodeath pathway from the cornea to the retina. SIGNIFICANCE STATEMENT: This study demonstrated that NM topical exposure in mice results in dramatic decline in retinal function associated with enhanced TUNEL staining in both corneal and retinal tissues. We also found that the NM treatment of corneal cells resulted in 228 differentially and exclusively expressed proteins primarily associated with ferroptosis. Moreover, these cells manifest the UPR PERK activation and an increase in VEGF secretion. The latter was also found in the corneas of the cexposed mice.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropatia Óptica Tóxica , Córnea , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Resposta a Proteínas não Dobradas
3.
J Pharmacol Exp Ther ; 388(2): 526-535, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977813

RESUMO

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Proteína BRCA1 , Proteína Supressora de Tumor p53 , Qualidade de Vida , Proteína BRCA2 , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Reparo do DNA , Dano ao DNA
4.
J Pharmacol Exp Ther ; 388(2): 560-567, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863486

RESUMO

Inhaled toxicants are used for diverse purposes, ranging from industrial applications such as agriculture, sanitation, and fumigation to crowd control and chemical warfare, and acute exposure can induce lasting respiratory complications. The intentional release of chemical warfare agents (CWAs) during World War I caused life-long damage for survivors, and CWA use is outlawed by international treaties. However, in the past two decades, chemical warfare use has surged in the Middle East and Eastern Europe, with a shift toward lung toxicants. The potential use of industrial and agricultural chemicals in rogue activities is a major concern as they are often stored and transported near populated areas, where intentional or accidental release can cause severe injuries and fatalities. Despite laws and regulatory agencies that regulate use, storage, transport, emissions, and disposal, inhalational exposures continue to cause lasting lung injury. Industrial irritants (e.g., ammonia) aggravate the upper respiratory tract, causing pneumonitis, bronchoconstriction, and dyspnea. Irritant gases (e.g., acrolein, chloropicrin) affect epithelial barrier integrity and cause tissue damage through reactive intermediates or by direct adduction of cysteine-rich proteins. Symptoms of CWAs (e.g., chlorine gas, phosgene, sulfur mustard) progress from airway obstruction and pulmonary edema to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which results in respiratory depression days later. Emergency treatment is limited to supportive care using bronchodilators to control airway constriction and rescue with mechanical ventilation to improve gas exchange. Complications from acute exposure can promote obstructive lung disease and/or pulmonary fibrosis, which require long-term clinical care. SIGNIFICANCE STATEMENT: Inhaled chemical threats are of growing concern in both civilian and military settings, and there is an increased need to reduce acute lung injury and delayed clinical complications from exposures. This minireview highlights our current understanding of acute toxicity and pathophysiology of a select number of chemicals of concern. It discusses potential early-stage therapeutic development as well as challenges in developing countermeasures applicable for administration in mass casualty situations.


Assuntos
Lesão Pulmonar Aguda , Substâncias para a Guerra Química , Fosgênio , Humanos , Pulmão , Cloro/farmacologia , Cloro/toxicidade , Substâncias para a Guerra Química/toxicidade , Fosgênio/metabolismo , Fosgênio/farmacologia , Lesão Pulmonar Aguda/metabolismo , Irritantes
5.
Cells ; 12(11)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37296653

RESUMO

Sulfur mustard gas (SM) is a vesicating and alkylating agent used as a chemical weapon in many mass-casualty incidents since World War I. Ocular injuries were reported in >90% of exposed victims. The mechanisms underlying SM-induced blindness remain elusive. This study tested the hypothesis that SM-induced corneal fibrosis occurs due to the generation of myofibroblasts from resident fibroblasts via the SMAD2/3 signaling pathway in rabbit eyes in vivo and primary human corneal fibroblasts (hCSFs) isolated from donor corneas in vitro. Fifty-four New Zealand White Rabbits were divided into three groups (Naïve, Vehicle, SM-Vapor treated). The SM-Vapor group was exposed to SM at 200 mg-min/m3 for 8 min at the MRI Global facility. Rabbit corneas were collected on day 3, day 7, and day 14 for immunohistochemistry, RNA, and protein lysates. SM caused a significant increase in SMAD2/3, pSMAD, and ɑSMA expression on day 3, day 7, and day 14 in rabbit corneas. For mechanistic studies, hCSFs were treated with nitrogen mustard (NM) or NM + SIS3 (SMAD3-specific inhibitor) and collected at 30 m, 8 h, 24 h, 48 h, and 72 h. NM significantly increased TGFß, pSMAD3, and SMAD2/3 levels. On the contrary, inhibition of SMAD2/3 signaling by SIS3 treatment significantly reduced SMAD2/3, pSMAD3, and ɑSMA expression in hCSFs. We conclude that SMAD2/3 signaling appears to play a vital role in myofibroblast formation in the cornea following mustard gas exposure.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Coelhos , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Miofibroblastos/metabolismo , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/metabolismo , Córnea/metabolismo , Mecloretamina/metabolismo , Mecloretamina/farmacologia , Transdução de Sinais , Proteína Smad2/metabolismo
6.
Cornea ; 42(6): 776-786, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729713

RESUMO

PURPOSE: Mustard gas (MG) is a potent blistering and alkylating agent that has been used for military and terrorism purposes. Ocular surface injuries are common after exposure to MG. This review provides an update on the pathophysiology, ocular surface complications, and treatment options for MG-related ocular injuries. METHODS: Required information was obtained by reviewing various databases such as Cochrane Library, Google Scholar, and PubMed until March 2022. Data were collected by using keywords: "mustard gas" OR "sulfur mustard" AND "eye" OR "cornea" OR "ocular complication" OR "keratitis" OR "keratopathy" OR "limbal stem cell deficiency" OR "dry eye." RESULTS: Chronic intracellular toxicity, inflammation, and ischemia have been shown to play an essential role in the pathogenesis of MG injury. Ocular surface injuries can have acute, chronic, and most distinctly a delayed-onset presentation leading to various degrees of limbal stem cell deficiency. To date, no treatment has been agreed on as the standard treatment for chronic/delayed-onset MG keratopathy. Based on the authors' experience, we propose a management algorithm for MG-related ocular surface injuries involving optimization of ocular health, anti-inflammatory therapy, and if needed surgical interventions. The management of chronic and delayed-onset presentation remains challenging. CONCLUSIONS: MG keratopathy is a unique form of chemical injury which can lead to a range of ocular surface pathologies. Long-term anti-inflammatory therapy even in patients with seemingly mild disease may potentially reduce the likelihood of the development of more severe delayed-onset disease.


Assuntos
Substâncias para a Guerra Química , Doenças da Córnea , Traumatismos Oculares , Gás de Mostarda , Humanos , Gás de Mostarda/toxicidade , Substâncias para a Guerra Química/toxicidade , Córnea/patologia , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/diagnóstico
7.
Arch Toxicol ; 97(2): 429-439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371551

RESUMO

Transient receptor potential (TRP) channels are important in the sensing of pain and other stimuli. They may be triggered by electrophilic agonists after covalent modification of certain cysteine residues. Sulfur mustard (SM) is a banned chemical warfare agent and its reactivity is also based on an electrophilic intermediate. The activation of human TRP ankyrin 1 (hTRPA1) channels by SM has already been documented, however, the mechanism of action is not known in detail. The aim of this work was to purify hTRPA1 channel from overexpressing HEK293 cells for identification of SM-induced alkylation sites. To confirm hTRPA1 isolation, Western blot analysis was performed showing a characteristic double band at 125 kDa. Immunomagnetic separation was carried out using either an anti-His-tag or an anti-hTRPA1 antibody to isolate hTRPA1 from lysates of transfected HEK293 cells. The identity of the channel was confirmed by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry. Following SM exposure, hTRPA1 channel modifications were found at Cys462 and Cys665, as well as at Asp339 and Glu341 described herein for the first time. Since Cys665 is a well-known target of hTRPA1 agonists and is involved in hTRPA1 activation, SM-induced modifications of cysteine, as well as aspartic acid and glutamic acid residues may play a role in hTRPA1 activation. Considering hTRPA1 as a target of other SM-related chemical warfare agents, analogous adducts may be predicted and identified applying the analytical approach described herein.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Gás de Mostarda/toxicidade , Gás de Mostarda/química , Canal de Cátion TRPA1/genética , Células HEK293 , Cisteína , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química , Alquilação
8.
Drug Chem Toxicol ; 46(2): 226-235, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34986718

RESUMO

The chemical warfare agent sulfur mustard (SM) causes severe cutaneous lesions characterized by epidermal cell death, apoptosis, and inflammation. At present, the molecular mechanisms underlying SM-induced injury are not well understood, and there is no standard treatment protocol for SM-exposed patients. Here, we conducted a high-content screening of the Food and Drug Administration (FDA)-approved drug library of 1018 compounds against SM injury on an immortal human keratinocyte HaCaT cell line, focusing on cell survival. We found that the B-Raf inhibitor vemurafenib had an apparent therapeutic effect on HaCaT cells and resisted SM toxicity. Other tested B-Raf inhibitors, both type-I (dabrafenib and encorafenib) and type-II (RAF265 and AZ628), also exhibited potent therapeutic effects on SM-exposed HaCaT cells. Both SM and vemurafenib triggered extracellular signal-related kinase (ERK) activation. The therapeutic effect of vemurafenib in HaCaT cells during SM injury was ERK-dependent, indicating a specific role of ERK in keratinocyte regulatory mechanisms. Furthermore, vemurafenib partially improved cutaneous damage in a mouse ear vesicant model. Collectively, our results provide evidence that the B-Raf inhibitor vemurafenib is a potential therapeutic agent against SM injury, and oncogenic B-Raf might be an exciting new therapeutic target following exposure to mustard vesicating agents.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Camundongos , Gás de Mostarda/toxicidade , Vemurafenib/farmacologia , Vemurafenib/metabolismo , Substâncias para a Guerra Química/toxicidade , Queratinócitos , Epiderme , Antineoplásicos Alquilantes
9.
BMC Pulm Med ; 22(1): 481, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539770

RESUMO

BACKGROUND: Respiratory diseases are the leading cause of morbidity and mortality in the survivors exposed to Sulfur Mustard (SM). The late abnormalities can be present as chronic bronchitis, tracheobronchial stenosis, asthma, bronchiectasis, airway narrowing, lung fibrosis, and lung cancers. This study aims to investigate the association between radiological findings and lung cancer development in patients exposed to sulfur mustard gas. METHODS: We entered 719 victims exposed to SM during the Iran-Iraq war into our follow-up study in a consensus manner. They were periodically followed with Chest HRCT scans from 2001 to an interval of 2014-2019. The mean year interval between exposure and the last follow-up was 38 years. For confirming the lung cancer in those with evidence of malignancy in their imaging, fine needle aspiration/biopsy and/or surgical intervention were done. RESULTS: Among 719 patients, 57% were free from any pathologic findings in their HRCT scan. Among the subjects who had the abnormal radiologic findings, Air Trapping (AT), Lung Fibrosis (LF), Bronchiectasis (B), and the evidence of lung cancer were found in 265 (36.9%), 207 (28.8%), 151 (21.0%), and 42 (5.8%), respectively. Adenocarcinoma (38.1%) was the most common type of cancer. The right lung was involved more than the left one regarding LF, B, and cancer (p value < 0.05). Considering the laterality, a significant correlation was found between the side of LF and B and the tumor side. Furthermore, it was shown that the lung lobes with LF were statistically correlated to tumor-involved lobes. The relative risk of AT and B existence for tumor development was 11.73 [4.87-28.26] and 10.14 [5.12-20.090], respectively. The most predictive finding was LF which caused the risk of developing tumor 17.75 [7.35-42.86] times higher in the patient with this pathology. By each increment of the number of LF and B, the risk of developing tumors increased by 51% and 76%, respectively. CONCLUSION: In survivors exposed to Sulfur Mustard, those with bronchiectasis and lung fibrosis have a significantly higher risk of developing lung cancers, so a close follow-up of these victims is recommended. Trial registration This study was confirmed by the institutional review board and ethics committee at Shiraz University of Medical Sciences (SUMS) with the ethical code IR.SUMS.MED.REC.1399.637.


Assuntos
Bronquiectasia , Substâncias para a Guerra Química , Neoplasias Pulmonares , Gás de Mostarda , Fibrose Pulmonar , Transtornos Respiratórios , Humanos , Gás de Mostarda/toxicidade , Seguimentos , Substâncias para a Guerra Química/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/diagnóstico por imagem , Bronquiectasia/induzido quimicamente , Bronquiectasia/diagnóstico por imagem , Irã (Geográfico)
10.
Exp Eye Res ; 224: 109247, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113569

RESUMO

An array of corneal pathologies collectively called mustard gas keratopathy (MGK) resulting from ocular exposure to sulfur mustard (SM) gas are the most prevalent chemical warfare injury. MGK involves chronic ocular discomfort that results in vision impairment. The etiology of MGK remains unclear and poorly understood primarily due to a lack of scientific data regarding structural and cellular changes in different layers of the cornea altered by mustard vapor exposure in vivo. The goals of this study were to (a) characterize time-dependent changes in different layers of corneal epithelium, stroma, and endothelium in live animals in situ by employing state-of-the-art multimodal clinical ophthalmic imaging techniques and (b) determine if SM-induced acute changes in corneal cells could be rescued by a topical eye drop (TED) treatment using in an established rabbit in vivo model. Forty-five New Zealand White Rabbit eyes were divided into four groups (Naïve, TED, SM, and SM + TED). Only one eye was exposed to SM (200 mg-min/m3 for 8 min), and each group had three time points with six eyes each (Table-1). TED was topically applied twice a day for seven days. Clinical eye examinations and imaging were performed in live rabbits with stereo, Slit-lamp, HRT-RCM3, and Spectralis microscopy system. Fantes grading, fluorescein staining, Schirmer's tests, and applanation tonometry were conducted to measure corneal haze, ocular surface aberrations, tears, and intraocular pressure respectively. H&E and PSR staining were used for histopathological cellular changes in the cornea. In vivo confocal and OCT imaging revealed significant changes in structural and morphological appearance of corneal epithelium, stroma, and endothelium in vivo in SM-exposed rabbit corneas in a time-dependent manner compared to naïve cornea. Also, SM-exposed eyes showed loss of corneal transparency characterized by increased stromal thickness and light-scattering myofibroblasts or activated keratocytes, representing haze formation in the cornea. Neither naive nor TED-alone treated eyes showed any structural, cellular, and functional abnormalities. Topical TED treatment significantly reduced SM-induced abnormalities in primary corneal layers. We conclude that structural and cellular changes in primary corneal layers are early pathological events contributing to MGK in vivo, and efficient targeting of them with suitable agents has the potential to mitigate SM ocular injury.


Assuntos
Queimaduras Químicas , Substâncias para a Guerra Química , Doenças da Córnea , Gás de Mostarda , Coelhos , Animais , Gás de Mostarda/toxicidade , Substâncias para a Guerra Química/toxicidade , Córnea/patologia , Doenças da Córnea/patologia , Queimaduras Químicas/patologia , Soluções Oftálmicas/farmacologia , Fluoresceínas
11.
BMC Med Genomics ; 15(1): 175, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933451

RESUMO

Sulfur mustard (SM) is an alkylating and forming chemical that was widely used by Iraqi forces during the Iran-Iraq wars. One of the target organs of SM is the skin. Understanding the mechanisms involved in the pathogenesis of SM may help better identify complications and find appropriate treatments. The current study collected ten SM-exposed patients with long-term skin complications and ten healthy individuals. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the skin protein profile, and statistical bioinformatics methods were used to identify the differentially expressed proteins. One hundred twenty-nine proteins had different expressions between the two groups. Of these 129 proteins, 94 proteins had increased expression in veterans' skins, while the remaining 35 had decreased expression. The hub genes included RPS15, ACTN1, FLNA, HP, SDHC, and RPL29, and three modules were extracted from the PPI network analysis. Skin SM exposure can lead to oxidative stress, inflammation, apoptosis, and cell proliferation.


Assuntos
Substâncias para a Guerra Química , Doença Enxerto-Hospedeiro , Gás de Mostarda , Veteranos , Substâncias para a Guerra Química/toxicidade , Humanos , Gás de Mostarda/toxicidade , Proteômica , Pele
12.
DNA Cell Biol ; 41(8): 716-726, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834647

RESUMO

Sulfur mustard (SM), a chemical warfare agent, can form adducts with DNA, RNA, and proteins. Reactions with DNA lead to the formation of both DNA monoadducts and interstrand cross-links, resulting in DNA damage, and is an important component of SM toxicity. Our previous in vivo studies indicated that dividing cells such as hematopoietic stem cells and intestinal villi stem cells seemed to have increased sensitivity to SM. Therefore, to compare the sensitivity of somatic and stem cells to SM and to investigate the mechanism of SM cytotoxicity, we isolated human foreskin fibroblasts, reprogrammed them into pluripotent stem cells, and then compared the DNA damage repair pathways involved upon SM treatment. Our results indicated that proliferating stem cells were more sensitive to SM-induced DNA damage, and the damage mainly comprised single-stranded breaks. Furthermore, the pathways involved in DNA repair in stem cells and somatic cells were different.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Substâncias para a Guerra Química/toxicidade , DNA , Dano ao DNA , Humanos , Gás de Mostarda/toxicidade , Células-Tronco
13.
Toxicol Lett ; 367: 48-58, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868497

RESUMO

Sarin was used as a chemical weapon due to its high neurotoxicity and mortality. Subacute sarin induced cognitive and behavioral disorder. However, the underlying mechanism is still unclear. Here we offered a multi-omic approach for the analysis of altered metabolites, lipids, and proteins to explore the neurotoxicity of subacute sarin. Guinea pigs were administered between the shoulder blades 16.8 µg/kg of sarin in a volume of 1.0 ml/kg body weight by subcutaneous injection once daily for 14 days. At the end of the final injection, guinea pigs were sacrificed, and striatum were dissected for analysis. A total of 138 different metabolites were identified in the metabolome analysis. Lipids and lipid-like molecules is the largest group (38.41%). For lipidomic analysis, a total of 216 lipids were identified. In proteomic study, over 4300 proteins were identified and quantified. By integrating these enriched components, we demonstrated that the joint pathways disturbed by subacute sarin mainly involving lipid, purine and pyrimidine metabolism in guinea pig striatum. Overall, this study highlights the powerfulness of omics platforms to deepen the understanding of nerve agents caused neurotoxicity.


Assuntos
Substâncias para a Guerra Química , Síndromes Neurotóxicas , Animais , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Cobaias , Homeostase , Dose Letal Mediana , Lipidômica , Lipídeos , Síndromes Neurotóxicas/metabolismo , Proteômica , Purinas , Pirimidinas/toxicidade , Sarina/toxicidade
14.
Sci Total Environ ; 824: 153858, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176369

RESUMO

The toxic chemical warfare agents (CWAs) are extremely harmful to the living organisms. Their efficient detection and removal in a limited time span are essential for the human health and environmental security. Twisted nanographenes have great applications in the fields of energy storage and optoelectronics, but their use as sensors is rarely described. Therefore, we have explored the sensitivity and selectivity of twisted nanographene analogues (C32H16, C64H32) towards selected toxic CWAs, including phosgene, thiophosgene and formaldehyde. The interaction between CWAs and twisted nanographenes is mainly interpreted by considering the optimized geometries, adsorption energies, natural bond orbital (NBO), frontier molecular orbital (FMO), non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. The structural geometries show that the central octagon of twisted nanographenes is the most favorable site of interaction. The interaction energies reveal the physisorption of selected CWAs on tNGs surface. The average energy gap change (%EH-La) and % sensitivity are quantitatively determined to evaluate the sensing capability of the twisted nanographenes. Among the selected CWAs molecules, the sensitivity of tNG analogues (C32H16 and C64H32) is superior towards thiophosgene (ThP), which is revealed by the high interaction energies of -8.19 and - 12.17 kcal/mol, respectively. This theoretical study will help experimentalists to devise novel sensors based on twisted nanographenes for the detection of toxic CWAs which may also work efficiently under the humid conditions.


Assuntos
Substâncias para a Guerra Química , Adsorção , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade , Humanos
15.
Toxicol In Vitro ; 78: 105256, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653647

RESUMO

The contact poison VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate) is a chemical warfare agent that is one of the most toxic organophosphorus compounds known. Its primary mechanism of toxic action is through the inhibition of acetylcholinesterase and resultant respiratory paralysis. The majority of work on VX has thus concentrated on its potent anticholinesterase activity and acute toxicity, with few studies investigating potential long-term effects. In this report we describe the effects of VX in aggregating rat brain cell cultures out to 28 days post-exposure. Cholinesterase activity was rapidly inhibited (60 min IC50 = 0.73 +/- 0.27 nM), but recovered towards baseline values over the next four weeks. Apoptotic cell death, as measured using caspase-3 activity was evident only at 100 µM concentrations. Cell type specific enzymatic markers (glutamine synthase, choline acetyltransferase and 2',3'-cyclic nucleotide 3'-phosphodiesterase) showed no significant changes. Total Akt levels were unchanged, while an increased phosphorylation of this protein was noted only at the highest VX concentration on the first day post-exposure. In contrast, significant and delayed (28 days post-exposure) decreases were noted in vascular endothelial growth factor (VEGF) levels, a protein whose reduced levels are known to contribute to neurodegenerative disorders. These observations may indicate that the long-term effects noted in some survivors of nerve agent intoxication may be due to VX-induced declines in brain VEGF levels.


Assuntos
Encéfalo/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Compostos Organotiofosforados/toxicidade , Acetilcolinesterase/sangue , Acetilcolinesterase/efeitos dos fármacos , Animais , Apoptose , Encéfalo/enzimologia , Agregação Celular , Células Cultivadas , Inibidores da Colinesterase/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Braz. arch. biol. technol ; 65: e22210268, 2022. tab
Artigo em Inglês | LILACS | ID: biblio-1364472

RESUMO

Abstract: Sulfur mustard is one of the chemical warfare agent. It rapidly reacts with the cutaneous tissues and other tissues, leading to various devastating long-term effects on human health. Mustard-exposed veterans suffer from its chronic skin problems, including itching, burning sensation, and eczema. We aimed to evaluate the protective effects of Myrtus communis L. (myrtle) on chronic skin lesions and quality of life of sulfur mustard-exposed veterans. In this randomized, double-blind clinical trial, 60 sulfur mustard-exposed patients were evaluated. Thirty patients received myrtle essence 5% cream (case group) and 30 patients received Eucerin cream (placebo group) twice in a day for one month. Then, We assessed the chronic skin problems and itching-related parameters (such as the itching time, severity, distribution, frequency, and calculated itching score), duration of sleep, number of waking up at night, and quality of life in the both groups. Our analysis of data revealed that application of myrtle cream effectively decreased skin problems including; itching and burning sensation. Additionally, myrtle markedly decreased skin lesion symptoms such as excoriation in the case group as compared with before treatment. Noticeably, myrtle cream significantly improved quality of life of the patients in the case group. The present study provides more in-depth information regarding the protective role of myrtle on the sulfur mustard-induces skin complication. Also, myrtle effectively improved quality of life of the sulfur mustard-exposed veterans.


Assuntos
Humanos , Pessoa de Meia-Idade , Dermatopatias/induzido quimicamente , Extratos Vegetais/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Myrtus communis/uso terapêutico , Fitoterapia , Gás de Mostarda/toxicidade , Prurido/induzido quimicamente , Qualidade de Vida , Veteranos , Indicadores de Qualidade de Vida , Eczema/induzido quimicamente , Exposição à Guerra/efeitos adversos , Irã (Geográfico)
17.
Toxicology ; 462: 152950, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534560

RESUMO

Sulfur mustard, a chemical warfare agent known to be a vesicant of skin, readily diffuses in the blood stream and reaches internal organs. In the present study, we used the analog (2-chloroethyl)-ethyl-sulfide (CEES) to provide novel data on the systemic diffusion of vesicants and on their ability to induce brain damage, which result in neurological disorders. SKH-1 hairless mice were topically exposed to CEES and sacrificed at different time until 14 days after exposure. A plasma metabolomics study showed a strong systemic impact following a self-protection mechanism to alleviate the injury of CEES exposure. This result was confirmed by the quantification of specific biomarkers in plasma. Those were the conjugates of CEES with glutathione (GSH-CEES), cysteine (Cys-CEES) and N-acetyl-cysteine (NAC-CEES), as well as the guanine adduct (N7Gua-CEES). In brain, N7Gua-CEES could be detected both in DNA and in organ extracts. Similarly, GSH-CEES, Cys-CEES and NAC-CEES were present in the extracts until day14. Altogether, these results, based on novel exposure markers, confirm the ability of vesicants to induce internal damage following dermal exposure. The observation of alkylation damage to glutathione and DNA in brain provides an additional mechanism to the neurological insult of SM.


Assuntos
Encéfalo/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Dano ao DNA/efeitos dos fármacos , Gás de Mostarda/análogos & derivados , Administração Cutânea , Animais , Substâncias para a Guerra Química/farmacocinética , Glutationa/metabolismo , Metabolômica , Camundongos , Camundongos Pelados , Gás de Mostarda/administração & dosagem , Gás de Mostarda/farmacocinética , Gás de Mostarda/toxicidade , Pele/metabolismo , Fatores de Tempo , Distribuição Tecidual
18.
Toxicol Appl Pharmacol ; 428: 115677, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390737

RESUMO

Sulfur mustard (SM) is a bifunctional alkylating agent that causes severe injury to the respiratory tract. This is accompanied by an accumulation of macrophages in the lung and the release of the proinflammatory cytokine, tumor necrosis factor (TNF)α. In these studies, we analyzed the effects of blocking TNFα on lung injury, inflammation and oxidative stress induced by inhaled SM. Rats were treated with SM vapor (0.4 mg/kg) or air control by intratracheal inhalation. This was followed 15-30 min later by anti-TNFα antibody (15mg/kg, i.v.) or PBS control. Animals were euthanized 3 days later. Anti-TNFα antibody was found to blunt SM-induced peribronchial edema, perivascular inflammation and alveolar plasma protein and inflammatory cell accumulation in the lung; this was associated with reduced expression of PCNA in histologic sections and decreases in BAL levels of fibrinogen. SM-induced increases in inflammatory proteins including soluble receptor for glycation end products, its ligand, high mobility group box-1, and matrix metalloproteinase-9 were also reduced by anti-TNFα antibody administration, along with increases in numbers of lung macrophages expressing TNFα, cyclooxygenase-2 and inducible nitric oxide synthase. This was correlated with reduced oxidative stress as measured by expression of heme oxygenase-1 and Ym-1. Together, these data suggest that inhibiting TNFα may represent an efficacious approach to mitigating acute lung injury, inflammatory macrophage activation, and oxidative stress induced by inhaled sulfur mustard.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Masculino , Gás de Mostarda/administração & dosagem , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
19.
Arch Toxicol ; 95(10): 3253-3261, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396457

RESUMO

Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity.


Assuntos
Substâncias para a Guerra Química/toxicidade , Creatina Quinase Forma MM/efeitos dos fármacos , Metionina/metabolismo , Gás de Mostarda/toxicidade , Alquilação/efeitos dos fármacos , Animais , Cromatografia Líquida , Creatina Quinase Forma MM/metabolismo , Cisteína/metabolismo , Coelhos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
20.
Neurotoxicology ; 84: 114-124, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753116

RESUMO

Sulphur mustard (H; bis(2-chloroethyl) sulphide) is a vesicant chemical warfare (CW) agent that has been well documented as causing acute injury to the skin, eyes and respiratory system. Although a great deal of research effort has been expended to understand how H exerts these effects, its mechanism of action is still poorly understood. At high exposures, H also causes systemic toxicity with chronic and long-term effects to the immune, cardiovascular and central nervous systems, and these aspects of H poisoning are much less studied and comprehended. Rat aggregate cultures comprised of multiple brain cell types were exposed to H and followed for four weeks post-exposure to assess neurotoxicity. Toxicity (LDH, caspase-3 and aggregate diameter) was progressive with time post-exposure. In addition, statistically significant changes in neurofilament heavy chain (NFH), glial fibrillary acidic protein (GFAP), Akt phosphorylation, IL-6, GRO-KC and TNF-α were noted that were time- and concentration-dependent. Myelin basic protein, CNPase and vascular endothelial growth factor (VEGF) were found to be especially sensitive to H exposure in a time- and concentration-dependent fashion, with levels falling to ∼50 % of control values at ∼10 µM H by 8 days post-exposure. Demyelination and VEGF inhibition may be causal in the long-term neuropsychological illnesses that have been documented in casualties exposed to high concentrations of H, and may also play a role in the peripheral neuropathy that has been observed in some of these individuals.


Assuntos
Encéfalo/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Gás de Mostarda/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Agregação Celular/fisiologia , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Relação Dose-Resposta a Droga , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA